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Current computational models of motion processing in the primate motion pathway do not cope well
with image sequences in which a moving pattern is superimposed upon a static texture. The use of non-
linear operations and the need for contrast normalization in motion models mean that the separation of
the in£uences of moving and static patterns on the motion computation is not trivial. Therefore, the
response to the superposition of static and moving patterns provides an important means of testing
various computational strategies. Here we describe a computational model of motion processing in the
visual cortex, one of the advantages of which is that it is highly resistant to interference from static
patterns.
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1. INTRODUCTION

Separating a motion signal from a static pattern signal
provides a challenge to current models of motion percep-
tion. Motion opponency has been thought of as a means of
assuring that motion mechanisms are insensitive to static
pattern. Two in£uential motion detection models, the
Reichardt correlation model (Reichardt 1961; Foster 1971;
Van Santen & Sperling1984, 1985) and the motion energy
model (Adelson & Bergen 1985), incorporate a stage in
which the outputs of systems tuned to opposite directions
of motion are subtracted (Barlow & Levick 1965). For the
purposes of the discussion of opponency we can consider
the Reichardt motion detector and the opponent stage of
the motion energy model as functionally equivalent. The
motion energy model speci¢es the construction of linear
¢lters which are orientated in space^time and are there-
fore tuned to a particular speed and direction of motion.
The outputs of even and odd symmetrical ¢lters tuned to a
particular direction of motion are squared and summed
and responses of units tuned to opposite directions are
subsequently subtracted. Motion opponency ensures a zero
response to static pattern but opponency per se does not
produce a general immunity to the addition of static
pattern. If the component ¢lters are sensitive to static
pattern, the nonlinear squaring operation ensures that the
motion opponent response to movement is in£uenced by
the static pattern signal.

Opponent motion energy, as de¢ned by Adelson &
Bergen (1985), is proportional to the square of the
stimulus contrast. To ensure that stimuli of di¡erent
contrasts which are moving at a particular speed appear
to move at the same speed there needs to be some kind of
normalization (Adelson & Bergen 1985; Heeger et al.
1996; Simoncelli & Heeger 1998). Contrast normalization

schemes usually use or include a measure of static pattern
contrast and this provides another signi¢cant route by
which static pattern can in£uence motion computation. A
generic model for computing velocity based on a
contrast-normalized, opponent combination of space^
time-orientated ¢lters is described in Bruce et al. (1996).
Figure 1 shows the response of the model to a moving sine
wave in the presence of a static sine wave pedestal. It is
clear that a small amount of static pattern can signi¢-
cantly a¡ect the measurement of speed.
It is possible to remove the in£uence of static pattern

by introducing a linear band-pass temporal ¢ltering
stage prior to motion analysis. The problem with this
strategy, which essentially removes all low temporal
frequencies, is that it would signi¢cantly reduce signal
strength for slowly moving patterns. The lower threshold
for detecting motion can be as small as 0.028 sÿ1 at the
fovea (Johnston & Wright 1983), which corresponds to
an orientation in space^time of only 18 (scaling space^
time such that 18sÿ1� 458). It would be di¤cult to
imagine a biologically plausible temporal ¢lter that
would remove the in£uence of static pattern while
retaining sensitivity to very slow motion. This suggests
that the in£uence of static pattern is removed actively by
special mechanisms or operations within the cortical
motion pathway rather than by early ¢ltering operations.
This view is consistent with neuropsychological studies
(Baker et al. 1991; McLeod et al. 1996) and lesion studies
in primates (Newsome & Pare 1988) showing that
damage to the motion area, V5^MTand its analogue in
the human brain increases sensitivity to both dynamic
and static noise with little e¡ect on low-level spatio-
temporal pattern detection thresholds (Hess et al. 1989;
Pasternak & Merigan 1994). It is di¤cult to account for
how damage to an extrastriate area, containing neurons
which do not themselves respond well to static pattern,
could allow the e¡ects of static pattern to be revealed if
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static signals are ¢ltered out at an early stage in motion
processing.
Standard spatio-temporal gradient techniques

(Fennema & Thompson 1979; Horn & Schunck 1981;
Lucas & Kanade 1981; Sobey & Srinivasan 1991; Heeger
& Simoncelli 1995) deliver a measure of image velocity
but they also su¡er from sensitivity to static pattern (Van
Santen & Sperling 1984). Figure 1 shows the e¡ects of
adding static pattern for the one-dimensional (1D)
multichannel gradient model (Johnston et al. 1992;
Johnston & Cli¡ord 1995). Typically, two-dimensional
(2D) space+ time gradient methods recover the compo-
nent of motion in the direction of the gradient of the
spatio-temporal image. This is the component which is
orthogonal to the isobrightness contours in the image.
The fact that this direction is often not the true direction
of motion of the pattern is generally referred to as the
àperture problem' (Hildreth 1984). The introduction of
static pattern provides additional di¤culties because the
image gradient can be dominated by the static structure
rather than by the moving pattern.

Thus, none of the standard biologically motivated
models cope well with the superposition of moving and
static patterns. The aim of this paper is to consider how
we might extend our earlier model (Johnston et al.
1992; Johnston & Cli¡ord 1995) to provide predictions

for 2D image sequences in a way that allows for the
active removal of the in£uence of static noise at a late
stage in the algorithm. A truncated 2D space+ time
Taylor series expansion is introduced as a model of
the representation of image structure in the visual
cortex. Measures of image speed and inverse speed are
computed, using a generalization of a technique
described in previous work, for a range of directions
rotating around the point of interest. These functions of
direction are subsequently combined to give an estimate
of the image velocity. Having outlined the basic struc-
ture of the model, the response of the model to the
addition of static pattern is described and the method
by which invariance with respect to static pattern is
achieved is discussed.

2. THE TAYLOR EXPANSION REPRESENTATION IN

THE VISUAL CORTEX

It is generally accepted that simple cells in V1 act like
spatio-temporal linear ¢lters (De Valois & De Valois
1988) but there is no general agreement about the exact
form and computational role of these linear ¢lters.
Following Koenderink (1988), Koenderink & van Doorn
(1987, 1992) and Young & Lesperance (1993) we consider
simple cells in the primary visual cortex to approximate
Gaussian derivatives of various orders. Blurring and
di¡erentiation of images can be accomplished by these
di¡erential operators, as described by Koenderink & van
Doorn (1987). Thus, the outputs of appropriate simple
cells can provide various orders of partial derivatives of
the blurred image, allowing a truncated Taylor
approximation of the image in the neighbourhood of a
point in space^time. A Taylor expansion provides a very
rich description of image structure at each point in the
visual ¢eld allowing, amongst other things, the
approximation of image brightness values at adjacent
points in space and time. This characterization of the
action of simple cells as computing partial derivatives
goes beyond the usual conception of the role of linear
¢ltering as selecting out spatio-temporal Fourier
components of image sequences.

The Taylor representation requires a bank of linear
¢lters, taking derivatives in two spatial directions x and y
and in time t. The spatial ¢lters are tuned to di¡erent
spatial frequencies. Filters extracting higher derivatives of
the blurred image have more lobes in their receptive
¢elds and are therefore tuned to higher spatial frequen-
cies. Those incorporating temporal di¡erentiation have
transient temporal characteristics (Johnston et al. 1992).
The neurophysiological and psychophysical evidence in
favour of the Gaussian derivative model of neural spatial
processing is discussed in Bruce et al. (1996) and Johnston
& Cli¡ord (1995) showed that the temporal ¢lters of the
human visual system can be characterized as di¡erentials
of Gaussians in log time. BothWerkhoven & Koenderink
(1990) and Otte & Nagel (1995) used Taylor expansions
of the image to compute motion, but their techniques
involved inversion of large matrices, which we would like
to avoid in a biological model. All the operations in the
current model can be achieved by combining the outputs
of linear, orientated spatio-temporal ¢lters through addi-
tion, multiplication and division. Thus, the mathematical
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Figure 1. Response of a motion energy computation to a sine
grating moving at 28 sÿ1 as a function of the contrast of a
static sine wave which has been added to the motion signal.
The abscissa shows relative contrast of a static 10 c degÿ1

pattern added to a 3 c degÿ1 sine grating drifting at 28 sÿ1. The
computed results are the output of the normalized opponent
energy stage of the model described on p. 185 of Bruce et al.
(1996) (~) and the output of the multichannel gradient model
as described in Johnston & Cli¡ord (1995) (*). Error bars are
� s.e. Both models use low-pass and band-pass temporal
¢lters. If the motion sequence was subject to temporal
di¡erentiation prior to motion energy calculation or if only
band-pass temporal ¢lters are used, the in£uence of static
pattern can be removed at an early stage. However, this
reduces sensitivity to slow motion and is inconsistent with the
neuropsychological and neurophysiological evidence for active
strategies for noise reduction at a late stage in motion
processing (see text).



algorithm introduced here can in principle be imple-
mented by neural systems in the visual cortex.

We chose a primary direction, x, corresponding to a
particular orientation column in V1 (Hubel & Wiesel
1974) or direction column (Albright et al. 1984) in V5^
MTand then constructed a vector, the nth component of
which contains the value of the nth-order term of the
Taylor approximation. Each component of the vector has
been truncated by eliminating terms above ¢rst order in
time and above ¢rst order in the direction y, orthogonal
to the primary direction. Di¡erentiation in the y spatial
direction generates linear ¢lters with end-zone inhibition
(Hubel & Wiesel 1965). The expansion is truncated to
ensure that, in the model as a whole, there are no more
than three linear temporal ¢lters and no greater spatial
complexity in the ¢lters than end stopping at both ends.
We can approximate the brightness about the point
P� (x, y,t) from the Taylor expansion at that point in
space^time (Lang 1987). Writing out the ¢rst three terms
of the truncated Taylor expansion explicitly, we have

f (x� p, y� q, t � r)

� � f (x,y, t)� � � fx(x,y, t)p� fy(x,y, t)q� ft(x,y,t)r�

� 1
2!

�
f2x(x,y,t)p

2 � fxy(x,y, t)2pq� fxt(x,y, t)2pr

� fyt(x,y, t)2qr
�
� . . . higherorder terms, (1)

where H� (p,q,r) is a vector from P to the point in the
visual ¢eld at which we require our approximation. Each
of the partial derivatives, denoted by subscripts in
equation (1), are represented by the output of a linear
spatio-temporal cortical ¢lter with a receptive ¢eld
centred at the location P in the image. The variables p, q
and r are weights on the ¢lter outputs which allow the
approximation of image brightness at any point P+H in
the space^time neighbourhood of P.
We group the terms by order of approximation, as

indicted by the square brackets in equation (1), to form a
vector which is our basic representation of image
structure. Let

k(x,y, t)�(k0(x,y, t), k1(x,y, t), k2(x,y, t), . . . , kn(x,y, t))
T (2)

be the vector-valued function associated with the Taylor
expansion at P, where each term corresponds to one of
the bracketed terms within equation (1). The superscript
T denotes the vector transpose. Note that k is really a
function of p, q, r as well as x, y, t but we can assume H
is ¢xed for the present without loss of generality to
simplify the notation. The derivative of the vector
function k� (k0, k1, k2. . .kn)T is given by the matrix

J � Dk(x,y, t) � (kx(x,y, t), ky(x,y, t), kt(x,y, t))

�

k0,x k0, y k0,t
k1,x k1, y k1,t
..
. ..

. ..
.

kn,x kn, y kn,t

26664
37775 (3)

where D is the derivative operator as de¢ned in equation
(3). Subscripts in the matrix index the components of the
vectors as well as indicating partial di¡erentiation. For
the motion computation only the values of the derivatives
of the terms in k(x, y,t) need to be represented in the
visual cortex.

From these basic measures we can compute the matrix
product

JTJ �
kx � kx kx � ky kx � kt

ky � kx ky � ky ky � kt

kt � kx kt � ky kt � kt

264
375. (4)

We have shown previously (Johnston et al. 1992) that the
sign of scalar product terms of the form kx � kt depends
upon the direction of motion irrespective of image
polarity, mirroring the behaviour of many directionally
selective neurons which respond in the same way to
moving light and dark bars. This matrix is integrated
over a spatio-temporal volume R � a5p5b, c5q5d and
e5r5f to give the matrix

M �
Z f

e

Z d

c

Z b

a
JTJ dpdqdr �

x � x x � y x � t
y � x y � y y � t
t � x t � y t � t

24 35.
(5)

As in earlier models (Johnston et al. 1992; Johnston &
Cli¡ord 1995) integration is implemented by indexing the
parameters, here p, q and r and summing over the
resulting inner products. The inner product x �y indicates
that the terms in the ¢rst vector are those generated by
di¡erentiating the basic representation of image structure
with respect to x, and the terms in the second vector are
generated by di¡erentiating the basic representation with
respect to y.

From this matrix we can recover measures of image
speed estimated in two orthogonal spatial directions by
computing the ratios x � t/x � x and y � t/y �y. This
essentially generalizes our previous model (Johnston &
Cli¡ord 1995) to include an additional spatial dimension.
Note that these ratios are well conditioned, since the
denominator is equal to the squared magnitude of a
vector, e.g. x � x�jxj2. This scalar product is only zero
when all the terms of the vector are zero, i.e. when the
image is uniform. In this situation we compute zero
divided by zero, which we de¢ne to be zero.

3. EXTRACTING SPEED AND INVERSE SPEED

We now consider computing these speed measures
concurrently for a range of primary directions, corre-
sponding to a range of orientation^direction columns
(Hubel & Wiesel 1974; Albright et al. 1984) in the primate
visual system. It is convenient to introduce a notation for
speed ŝ and inverse speed �s vectors. We may construct a
vector, ŝ� (ŝk,ŝ?), whose components are speed and
orthogonal speed. This vector is computed at m di¡erent
orientations � around a point in the image. Raw speed
measures, e.g. x � t/x � x, are in¢nite for directions parallel
to isobrightness contours (¢gure 2a^ c). However, we can
de¢ne well-conditioned directional speed vectors,
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ŝ(�) �
����
2
m

r "
x� � t�
x� � x�

 
1�

�
x� � y�
x� � x�

�2
!ÿ1

,

y� � t�
y� � y�

 
1�

�
x� � y�
y� � y�

�2
!ÿ1#

.

(6)

The m�2 matrix in equation (6) is normalized by a
factor depending on the number of directions, m. By
including multiplications involving terms computing the
orientation of image structure as a function of direction,
e.g. x �y/x � x, we can ensure that for 1D spatial stimuli,
equation (6) delivers a sinusoidal function of direction,
the amplitude of which is directly related to speed (¢gure
2b,d ). We can also calculate inverse speed, �s from terms
in the matrix in equation (5):

�s(�) �
����
2
m

r  
x� � t�
t� � t�

,
y� � t�
t� � t�

!
. (7)

For 1D spatial stimuli this delivers a sine function with an
amplitude is directly related to inverse speed (¢gure
2b,d ).

Koenderink & van Doorn (1976) showed that a
velocity ¢eld can be decomposed into a translation
component and di¡erential components: divergence and
curl, plus two components of a¤ne sheer. For a pure
translation the sum of both the components of ŝ(�) over
� radians will be zero. A local divergence will result in a
non-zero sum of ŝk(�) and a local curl will result in a
non-zero sum of ŝ?(�) over � radians. To recover the
translation component and remove the di¡erential
components we can force the integral of the directional

512 A. Johnston and others Robust velocity computation

Proc. R. Soc. Lond. B (1999)

Figure 2. Speed and inverse speed computed as a function of direction for a moving 1D pattern in a 2D image. (a) Two frames
of a sequence showing a moving line are superimposed. Because of the aperture problem all motion vectors shown indicate
possible translations of the line. However, here we want to consider computed speed as a function of direction. (b) The dotted
line shows raw speed as a function of direction in a polar plot. We can think of this as illustrating the speed (represented as
distance from the origin) as we change the direction in which it is computed or, alternatively, speed measured in a single
direction as we change the orientation of the line. The same data is shown as a linear plot in (c) where it is clearer that computed
velocity along the line is in¢nite. The ordinate is in radians and the data are plotted over 2� radians. Inverse speed is plotted as
a small circle in (b) and as a low amplitude cosine wave in (d). The amplitude re£ects the inverse speed. The larger circle is the
result of plotting the speed measures from equation (6) which also appears as the higher amplitude linear plot in (d). (e) The
result of plotting speed as in equation (6) or inverse speed for a line moving at 18 sÿ1 rotated to a direction slightly clockwise with
respect to the ¢ducial reference frame (shown as a dotted line). It is clear from this analysis that speed can be computed from the
amplitude of these direction functions and direction of motion can be computed as a phase angle.



speed functions to be zero by extracting the fundamental
Fourier coe¤cients. This is achieved by projecting onto
¢ducial sine and cosine functions. We construct normal-
ized cosine and sine vectors

F(�) � ((Fk(�),F?(�)) �
��������
2=m

p
�cos (�), sin (�)�. (8)

This matrix forms both a ¢ducial reference frame, in
terms of angle �, for the computation of direction of
motion and allows for the extraction of the fundamental
Fourier coe¤cients of the directional speed functions.
Speed squared is computed as a ratio of determinants:

S 2 �

��������

��������
ŝk � Fk ŝk � F?
ŝ? � Fk ŝ? � F?
ŝk � �sk ŝk � �s?
ŝ? � �sk ŝ? � �s?

, (9)

where, for example, ŝk�F? is the scalar product of the ¢rst
column of ŝ and the second column of F. The denomi-
nator takes the value of one for rigid motion of simple
patterns and can vary from point to point in the image to
compensate for conditions in which the computed speed
and inverse speed are not exact inverses. The denomi-
nator can be zero when ŝk � c ŝ? , which would be the
case for a pure divergence; however, if this relation holds
the numerator is also zero and, as in the similar situation
noted above, the indeterminancy is resolved by rule. It is
our assumption that direction is coded in the visual
system as a phase angle (¢gure 2e) by pairs of cells
encoding the projection on ¢ducial sine and cosine
functions, respectively. However, for the purpose of the
simulations direction is computed explicitly as

direction � tanÿ1
 

(�sk � ŝk) � F? � (�s? � ŝ?) � Fk
(�sk � ŝ k) � Fk ÿ (�s? � ŝ?) � F?

!
.

(10)

There are only six parameters in the model. Three are
required to de¢ne the spatio-temporal parameters of the
blur kernel, which is di¡erentiated to generate all of the
linear ¢lters used in the computation. Thus, the relation-
ship between the ¢lters is highly constrained, but this
degree of constraint is re£ected in the shape of the
temporal ¢lters (Johnston & Cli¡ord 1995) measured
psychophysically by Hess & Snowden (1992). These three
blur kernel parameters map the spatio-temporal scale of
the model onto physical space^time and were ¢xed in
previous work (Johnston & Cli¡ord 1995). They provide
a means of calibrating the model to deliver measures of
speed in deg sÿ1 (ca. 18� 128 pixels and 1s�128 pixels).
An additional parameter sets the number of spatial
derivatives in the primary direction (¢ve), the ¢fth para-
meter de¢nes the number of orientations^directions
sampled (24), which also determines the aspect ratio of
the spatio-temporal integration zones and the sixth
de¢nes the extent of these integration zones (11 pixels).

4. SIMULATIONS

First we establish that the model provides accurate
results for simple translating patterns, sine gratings and
checkerboards. For a grating moving at 28 sÿ1 the direc-

tion indicated is orthogonal to the brightness contours
and the average speed is correct to two signi¢cant ¢gures
with zero standard deviation. For a moving checkerboard
(four pixels per square, 28 sÿ1) the average speed and
standard deviation are 1.98 and 0.03, respectively. In
¢gure 3a we show the e¡ects of adding binary static noise.
The response of the model to a grating moving at 28 sÿ1

superimposed on a static random binary noise pattern is
largely una¡ected by the presence of the static pattern.
This is examined in more detail in ¢gure 4. The averaged
speed (¢gure 4a) and standard deviation (¢gure 4b) are
shown for a grating moving at 48 sÿ1 superimposed on
binary noise, as a function of the Michelson contrast ratio
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Figure 3. The ¢gure shows dense direction and speed images
computed for an arbitrarily chosen frame in a motion
sequence. The stimulus frame is shown on the left. In the
centre a speed map is displayed which is scaled to the full
brightness range. The narrow border (shown in black) is set to
a speed of zero. In the rightmost column the corresponding
direction map is plotted, with direction coded by colour which
should be read with reference to the colour wheel. (a) Results
of the full model for a grating moving upwards (2 c degÿ1 and
28 sÿ1: calibrated at 1 image� 18, 1 image� 1 s and image
size� 128 pixels�128 pixels; Johnston & Cli¡ord 1995)
superimposed on static binary noise. Computed mean
speed� 2.00 and s.d.� 0.05. (b) Model output using just the
information on the numerator of equation (9) for the stimulus
in (a) (computed mean speed� 1.32 and s.d.� 0.39). (c) As in
(a) but without the spatio-temporal integration stage of the
model (computed mean speed� 0.97 and s.d.� 1.87). (d)
Results for the model used in (c) without the added static
pattern (computed mean speed� 2.00 and s.d.� 0.0).



(relative amplitude) of the moving sine wave and static
binary noise. It is clear that the calculated mean speed is
essentially invariant with respect to the contrast of the
static pattern. The normalized standard deviation is small
but increases with the contrast of the static pattern.

Figure 4c shows that the model recovers speed
accurately in the presence of noise (Michelson contrast
ratio, 1:1) over a range of speeds. Since the true speed of
the sine grating is constant throughout the frame, low
standard deviations indicate a consistent measure of
speed irrespective of the structure of the underlying static
pattern (¢gure 4b,d ). Figure 4 shows that the model is
able to recover the speed and direction of motion of a sine
wave grating in the presence of 2D binary noise, even in
situations in which the contrast of the noise is greater
than the signal by a factor of 16.
As discussed in ½ 1 standard motion energy and spatio-

temporal gradient models are in£uenced by the presence
of static spatial pattern. To demonstrate which features of
the model presented here produce invariance with respect
to static pattern, we ¢rst disabled the integration stage,

equation (5), while keeping the rest of the structure the
same. In this degraded form the model is essentially a
spatio-temporal gradient model in which di¡erentials of
various orders are combined with equal weight. One can
see in ¢gure 3c that this degraded version is sensitive to
static pattern even though the same spatio-temporal
¢lters are used as in the full model. As expected, the
computed direction appears to be dominated by the static
pattern. The computed speed ¢eld contains many large
isolated spikes. In ¢gure 4a we see that the average
computed speed is reduced as the relative contrast of the
noise is increased and that speed is generally under-
estimated (¢gure 4c). The normalized standard deviation,
which is a measure of the relative variation in the output,
is highest in the case in which the integration stage is
disabled. This manipulation also demonstrates that the
motion energy con¢guration is sensitive to static pattern
since one can replace any of the inner products in
equation (4) with a motion energy-like computation (Van
Santen & Sperling 1985; Adelson & Bergen 1986) using
the relation
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Figure 4. (a) Response of the full model (.), the numerator of equation (9) (~) and the full model minus the integration stage
(!) to a moving grating (2 c degÿ1 and 48 sÿ1) in the presence of a static binary noise as a function of the relative contrast of the
static pattern. (b) Normalized standard deviation for the data in (a). The standard deviation of the responses within a single
frame is divided by the mean computed speed to show the variability of the computed result over space. (c) Response of the full
model (.), the numerator of equation (9) (~) and the full model minus the integration stage (!) to a moving grating in the
presence of a static binary noise (contrast ratio 1:1) as a function of the speed of the grating. (d ) Normalized standard deviation
for the data in (c).



kx � kt �
1
4
(jkx � ktj2 ÿ jkx ÿ ktj2), (11)

where, for example, kx is a vector of ¢lters with an extra
spatial derivative in the x spatial direction and kt is a
vector of spatio-temporal ¢lters with an extra derivative
in the time direction. Then kx � kt becomes a vector of
¢lters which are space^time orientated and kx ÿ kt
becomes their mirror symmetrical partners. See Bruce et
al. (1996) for an illustrated discussion of this relationship.
Further degrading the model by reducing the number of
spatio-temporal ¢lters to bring its structure closer to the
standard energy model has little e¡ect. Figure 3d demon-
strates that the spatio-temporal gradient con¢guration
gives good results for sine wave gratings when static noise
is removed.

If the integration stage of the model is restored and the
results for the numerator in equation (9) alone are plotted
we see that the response of the model to the rigid motion
of gratings is also degraded (¢gures 3b and 4) but less so
than when the integration stage is disabled. However,
there is still a signi¢cant reduction in computed speed
particularly at high speeds and a dependence on static
pattern contrast. A decrease in the number of directions
sampled further degraded performance but a decrease in
the number of higher order spatial ¢lters included in the
model had little e¡ect. Results of the simulations showed
that the integration stage and the quotient calculated in
equation (9) were critical to the success of the model in
delivering invariance to static pattern.

5. ANALYSIS

Let k(x, y,t) � f(x, y,t) + g(x, y,t) be the linear addition
of a moving, f(x, y,t), and static, g(x, y,t) pattern. Because
of the linearity of di¡erentiation and the inner product,
the matrix in equation (4) can be rewritten as

JTJ �
kx � kx kx � ky kx � kt

ky � kx ky � ky ky � kt

kt � kx kt � ky kt � kt

24 35

�
f x � f x f x � f y f x � f t
f y � f x f y � f y f y � f t
f t � f x f t � f y f t � f t

24 35

�
gx � f x gx � f y gx � f t
gy � f x gy � f y gy � f t
0 0 0

24 35

�
f x � gx f x � gy 0
f y � gx f y � gy 0
f t � gx f t � gy 0

24 35� gx � gx gx � gy 0
gy � gx gy � gy 0
0 0 0

24 35.
(12)

The term fx, for example, denotes the partial derivative of
the vector derived from the Taylor expansion of the
function f(x, y,t), as de¢ned in equation (1) with respect to
the parameter x. Note gt � 0 since g(x, y,t) is the static
pattern and the partial derivatives of g with respect to
time are zero. Since integration is a linear operation the
integrals of terms on the left-hand side, computed by

indexing the parameters p, q and r as described above, are
equal to the sum of the integrals of the corresponding
terms on the right-hand side. The decomposition shows
that the inverse speed measures (equation (7)), which
result from ratios of integrals of terms in the third row,
depend almost entirely on the moving pattern, f(x, y,t)
and not on the static pattern, g(x, y,t). The two terms on
the bottom row of the third matrix, ft�gx, ft�gy, add to the
numerators of the inverse speed ratios. For these terms to
be close to zero the vectors should be either be uncorre-
lated or equally likely to be positively or negatively corre-
lated over the spatio-temporal extent of the integration
zone. Suppose the brightness of the static pattern is
increasing in a particular spatial direction (positively
signed) then the brightness change over time induced by
the moving pattern is equally likely to be positively or
negatively signed. Since oppositely signed products will
cancel in the integration, the sum of these terms over the
spatio-temporal volume is likely to be small. The denomi-
nator, kt�kt, of the ratios in equation (7) is entirely unaf-
fected by static pattern. Thus, inverse speed as calculated
here provides a robust measure even in the presence of
static pattern. The directional speed computations also
include inner products between the static and moving
functions which can be expected to be small, but are
corrupted by static pattern terms from the fourth matrix.
Substituting into equation (6) we have

ŝ�

R
R
( f x� f t � gx� f t)R

R
( f x� f x � 2gx � f x � gx� gx)

1�

R
R
kx� kyR

R
kx� ky

0B@
1CA

20B@
1CA
ÿ1

.

(13)

The term gx � gx reduces the computed directional speed
to an extent which is roughly proportional to the contrast
of the static pattern.

This analysis helps us to understand why the algo-
rithm is insensitive to static pattern. In the current
model speed is calculated as a ratio of determinants
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Figure 5. Since determinants of matrices can represent areas,
the calculation of the speed in equation (9) can be interpreted
as the ratio of the products of areas spanned by the vectors
shown above. The vectors are m-dimensional, having the same
number of elements as the number of direction columns. Since
the speed directional vectors ŝ � (ŝk,ŝ?) contribute to both the
numerator and denominator the measure is determined
primarily by the inverse speed vectors which are relatively
invariant with respect to the addition of static pattern.



(equation (9)). Both determinants can be interpreted as
the products of the areas spanned by the two pairs of
vectors (¢gure 5). The speed measures contribute to both
numerator and denominator and cancel in taking the
ratio. Thus, the ¢nal speed value is primarily computed
on the basis of the inverse speed information which is
relatively una¡ected by static pattern. However, this
relative invariance to static pattern depends upon the
integration over the space^time volume. In the case of
the rigid motion of smoothly varying pattern the
denominator in equation (9) equals one and speed is
given by the numerator.

6. DISCUSSION

We have described a method of computing velocity
which is computationally robust in the presence of static
pattern. The model computes directional speed and
inverse speed from the derivatives of image structure,
which is represented by aTaylor expansion and combines
these measures via a ratio of determinants. We showed
that the full model is virtually una¡ected by the presence
of static pattern. The model can be degraded to make the
algorithm equivalent to a standard spatio-temporal
gradient model which itself can be recast in the form of
an energy model or Reichardt equivalent (Adelson &
Bergen 1986; Bruce et al. 1996). Degrading the model in
this way has a signi¢cant detrimental e¡ect on computa-
tion of motion in the presence of static noise.
Informal observations do not indicate any substantive

e¡ect of static pattern on speed perception. Psycho-
physical investigations have concentrated more on
direction discrimination for stimuli close to threshold.
Van Santen & Sperling (1984) showed that direction
discrimination judgements were una¡ected by the
addition of static pattern of equal or double the contrast
of the moving pattern. Lu & Sperling (1995, 1996), using
a similar technique, showed thresholds increased linearly
(on log^log axes) with pedestal contrast for pedestal
contrast ratios greater than 2. This increase in threshold
is consistent with the model data in ¢gure 4b which shows
increased variability in the computed velocity ¢eld as
pedestal contrast is increased. Zemany et al. (1998) have
also shown phase-dependent pedestal e¡ects on motion
detection.

The importance of responses to motion in the presence
of static pedestals as a means of selecting between models
was highlighted by Van Santen & Sperling (1984) who
argued that invariance to static pattern was predicted by
the elaborated Reichardt model, but not by other
methods including spatial correlation analysis between
adjacent frames of a motion sequence or spatio-temporal
gradient techniques. The prediction that the Reichardt
model (or a motion energy equivalent) should be invar-
iant to static pattern relies on the idea that the detector
integrates its response over all preceding time (Reichardt
1961) or a temporal period exactly divisible by the wave-
length of some periodic input pattern (Van Santen &
Sperling 1985), although the in¢nite integration could be
replaced by a leaky integrator (Foster 1971). This is a
highly restrictive condition which will virtually never be
met in natural image sequences. In addition, the output
of the Reichardt detector is proportional to the square of

the contrast, so further processing is necessary to recover
speed, including contrast normalization which may rein-
troduce dependence upon the static pattern.

There are some similarities in the way in which the
model achieves invariance to contrast and invariance to
static pattern. All of the divisions used to extract direc-
tional measures involve the projection of one partial
derivative of the Taylor expansion vector onto another.
These are self-normalizing operations with respect to
contrast and therefore an active process of contrast gain
control is not required to stabilize the system. Changing
contrast will a¡ect the numerator and denominator simi-
larly (Johnston et al. 1992) and so contrast should only be
expected to a¡ect the computed velocity at low contrasts
where the response of some of the neural components
may fall below threshold. The ¢nal speed computation
also involves a ratio. Factors a¡ecting the speed functions
will in£uence numerator and denominator similarly and
so not in£uence the value of the quotient. One might
reasonably ask, why include the speed measures if they
have no in£uence? There may be a number of reasons for
this but this architecture has the advantage of robustness
in that when inverse speed is small, speed is large (and
vice versa). Thus, taking the product on the denominator
guards against a divide by zero problem.

The model requires the existence of neurons which
encode inverse speed. There is a considerable amount of
evidence for `low-pass' speed-sensitive neurons in the
visual system of the cat and monkey, which reduce their
¢ring rate as speed is increased (Orban et al. 1981;
Mikami et al. 1986; Rodman & Albright 1987; Lagae et al.
1993). The model envisages that speed is encoded in
terms of ¢ring rate. Although it is generally assumed
population coding provides a better model of biological
speed coding than rate coding, in fact the distribution of
speed-tuned neurons in V5^MT is far from £at, which
might be the expectation from a population code view
point. Cheng et al. (1994) plotted the distribution of velo-
city-tuned cells in V5^MT and showed that the most
prevalent class are neurons tuned to 328 sÿ1. Relatively
few neurons are tuned to less than 48 sÿ1. Some tuned
cells may be the precursors of the ¢nal velocity computa-
tion (¢gure 4). In addition, the reduction in ¢ring rate at
high velocities may be due to stimuli passing beyond the
temporal frequency cut-o¡ of temporal ¢lters early in the
motion pathway, which would render the moving stimulus
invisible. Motion transparency, which has also been
thought of as evidence for a population code (Simoncelli
& Heeger 1998), can be thought of as resulting from
grouping processes acting on local velocity signals
(McOwan & Johnston 1996).

The model provides an e¡ective explanation for the
sensitivity to static noise shown by the motion-blind
patient L.M. (Baker et al. 1991; McLeod et al. 1996). If
static pattern was removed at the outset by temporal
¢ltering there is no reason to expect that an extra-
striate lesion should introduce enhanced sensitivity to
this type of noise. The observation, that lesioning the
model by removing spatio-temporal integration and the
denominator of equation (6) increases sensitivity to
static noise, leads us to speculate that the neural
substrate of these processes may be located in extra-
stiate motion areas.
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In summary, analysing the response to motion in the
presence of static pattern provides an e¡ective way of
choosing between motion models. Biological models of
motion perception typically involve some kind of motion
energy or spatio-temporal gradient calculation. The
squaring and product operations involved in these
models makes it di¤cult to separate the in£uences of
moving and static patterns. It is also the case, but not
emphasized here, that models based on feature tracking
(Del Viva & Morrone 1998) are subject to the problem
of extracting the features of the moving pattern from the
features of the static pattern. Early removal of static
noise through band-pass temporal ¢ltering was
discounted because, if true, it would be di¤cult to
explain increased sensitivity to static noise after lesions
late in the motion pathway. We have shown that it is
possible to remove the in£uence of static pattern on
motion analysis at a late stage in motion computation.
The two stages beyond the usual combination of linear
¢lters described here, integration over a spatio-temporal
volume and the combination of speed and inverse speed
functions, provide a means of e¡ectively reducing the
in£uence of static pattern on motion analysis. Damage to
these processes results in degraded performance in the
presence of static noise.
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